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Abstract
The general form of the Stefan–Boltzmann law for the energy density of black-
body radiation is generalized to a spacetime with extra dimensions using
standard kinetic and thermodynamic arguments. From statistical mechanics
one obtains an exact formula. In a field-theoretic derivation, the Maxwell field
must be quantized. The notion of electric and magnetic fields is different in
spacetimes with more than four dimensions. While the energy–momentum
tensor for the Maxwell field is traceless in four dimensions, it is not so when
there are extra dimensions. But it is shown that its thermal average is traceless
and in agreement with the thermodynamic results.

PACS numbers: 11.10.Kk, 05.70.−a, 05.30.−d, 03.70.+k, 11.10.Wx

1. Introduction

Since the introduction of string theory to describe all the fundamental interactions, the
possibility that we live in a spacetime with more than four dimensions has steadily generated
more interest both in elementary particle physics and nowadays also in cosmology. We know
that any such extra dimensions must be microscopic if they exist at all and many efforts are
already under way to investigate such a possibility [1].

Physical phenomena in spacetimes with extra spatial dimensions will in general be
different from what we know in our spacetime of four dimensions. Although the fundamental
laws in such spacetimes can easily be generalized, their manifestations will not be the same.
Even if it turns out that there are no extra dimensions, it is still instructive to investigate what
the physics then would be like. We will assume throughout the paper that our world has d
infinitely large spatial dimensions, that is our spacetime is D-dimensional Minkowski. This is
clearly unphysical, but it is still an important scenario to investigate, both for pure theoretical
reasons, and also as a foundation for doing more realistic calculations later.

Here we will take a closer look at the Maxwell field and then in particular its properties
at finite temperature in the form of black-body radiation. It is characterized by a pressure p
and an energy density ρ. In a spacetime with three spatial dimensions, these are related by
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p = ρ/3. This can be derived by purely kinematic arguments which are used in the following
section to find the corresponding relation in a D-dimensional Minkowski spacetime. When the
radiation is in thermal equilibrium at temperature T, we then get by thermodynamic arguments
the generalization of the Stefan–Boltzmann law in the form ρ ∝ T D .

In the following section, these results are derived more accurately using statistical
mechanics. One obtains these results by just assuming that the radiation is composed of
massless particles described by quantum mechanics. Except for an overall factor giving the
spin multiplicity, these results should then be the same for scalar particles with no spin, photons
which have spin-1 and gravitons which are the massless spin-2 quanta of gravitation. While
our results for the pressure and density correspond to a traceless thermal average of the energy–
momentum tensor, the general trace of the corresponding energy–momentum tensors of these
fields is not zero. This apparent paradox is discussed and resolved in the last section where
we concentrate on the Maxwell field and the corresponding photons at finite temperature. The
quantization of the field in a spacetime with dimensions D > 4 is a bit more complicated
than in the usual case since the magnetic field can no longer be represented by a vector. Also
the number of independent directions of polarization or helicity states will now be more than
two. Landsberg and De Vos has calculated the Stefan–Boltzmann constant in d-dimensional
spaces, but including only two helicity states instead of d − 1, as later noted by Menon and
Agrawal [2].

2. Thermodynamics

In an ordinary spacetime with D = 3 + 1 dimensions, the pressure of black-body radiation
with energy density ρ is given as p = ρ/3. This is most easily derived from a simple kinetic
consideration of massless particles impinging on a plane wall and thereby being reflected [3].
If the angle between the momentum of the incoming particle and the normal to the plane is θ ,
then the kinetic pressure is

p = ρ〈cos2 θ〉, (1)

where the average is taken over the full spherical angle 2π
∫ π

0 dθ sin θ = 4π . In d = 3 spatial
dimensions one then finds 〈cos2 θ〉 = 1/3, which gives the above result for the pressure.

With extra, non-compactified dimensions, the pressure will again be given by (1). The
angular average is then a bit more cumbersome to evaluate and is worked out in the appendix.
Not so surprising, we then find that the pressure is in general p = ρ/d, where d is the number
of spatial dimensions.

Assuming that the black-body radiation is described by ordinary thermodynamics, we can
now also derive the temperature dependence of the energy density [4]. If the radiation fills a
volume V and is in equilibrium with temperature T, the total energy U = ρV will obey the
energy equation(

∂U

∂V

)
T

= T

(
∂p

∂T

)
V

− p. (2)

With p = ρ/d this gives

ρ = T

d

dρ

dT
− ρ

d
, (3)

which simplifies to

dρ

ρ
= (d + 1)

dT

T
. (4)
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One thus obtains for the energy density

ρ = CT D, (5)

where C is an integration constant and D = d + 1 is the dimension of the extended spacetime.

3. Statistical mechanics

We will now consider the radiation as made up of massless particles moving in a d-dimensional
space obeying Bose–Einstein statistics and in thermal equilibrium at temperature T. It will be
convenient to use units so that the speed of light c = 1 and Planck’s constant h̄ = 1. The
energy of one such particle with momentum k is then ωk = |k| = k and the internal energy
density will be given by

ρ =
∫

ddk

(2π)d

ωk

eβωk − 1
, (6)

with β = 1/(kBT ) where kB is the Boltzmann constant. The differential volume element
in momentum space is ddk = �d−1k

d−1 dk, where the full solid angle �d−1 is given in the
appendix. Making then use of the integral∫ ∞

0
dx

xn

ex − 1
= �(n + 1)ζ(n + 1), (7)

where ζ(z) is Riemann’s zeta-function, we have

ρ = �d−1

(2π)d
�(D)ζ(D)(kBT )D (8)

when expressed in terms of the spacetime dimension D = d + 1. The temperature dependence
is seen to be in agreement with the thermodynamic result (5). The pressure of the gas is
obtained from the free energy in the same manner as in the ordinary case when D = 4. That
is, p = −(∂F/∂V )T where the energy, entropy and free energy F = U − T S is derived
from the expression (8) for ρ = U/V . Again one finds p = ρ/d consistent with the kinetic
argument in the first section.

Using the duplication formula for the �-function

�(2z) = 22z− 1
2√

2π
�(z)�

(
z +

1

2

)
, (9)

in the result (8) for the density, the formula for the corresponding pressure takes the somewhat
simpler form:

p = �(D/2)

πD/2
ζ(D)(kBT )D. (10)

As a check, we get in the ordinary case of four spacetime dimensions p = (π2/90)(kBT )4

since ζ(4) = π4/90. This is essentially the Stefan–Boltzmann law in these particular units.
If the massless particles making up the radiation gas has nonzero spin, these results must be
multiplied by the corresponding spin multiplicity factor.

4. Scalar quantum field theory

The massless particles in the previous section will be the quanta of a corresponding quantized
field theory. Let us first consider the simplest case when these are spinless particles described
by a scalar field φ = φ(x, t). The corresponding Lagrangian is

L = 1
2ηµν∂µφ∂νφ ≡ 1

2 (∂λφ)2, (11)
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where the Greek indices take the values (0, 1, 2, . . . , d). The metric in the D-dimensional
Minkowski spacetime is ηµν = diag(1,−1,−1, . . . ,−1). From here follows the equation of
motion ∂2φ = 0, which is just the massless Klein–Gordon equation.

We are interested in the energy density and pressure of the field. Both follow from the
corresponding canonical energy–momentum tensor [5]

Tµν = ∂µφ∂νφ − 1
2ηµν(∂λφ)2. (12)

In a quantized theory, it is the expectation value 〈Tµν〉 which gives the corresponding measured
values. The energy density is therefore

ρ = 〈T00〉 = 1
2 〈φ̇2〉 + 1

2 〈(∇φ)2〉. (13)

Spherical symmetry implies that the expectation values of all the spatial components are
simply given as 〈Tmn〉 = pδmn, where p is the pressure. Thus, we find that the pressure is
given by the trace

p = 1

d
〈Tnn〉 = 1

d
〈(∇φ)2〉 +

1

2
〈φ̇2 − (∇φ)2〉 (14)

when we use the Einstein convention summing over all equal indices. These expectation
values are usually divergent, but the thermal parts will be finite for such a free field.

In order to quantize the field, we consider it to be confined to a finite volume V with
periodic boundary conditions. It can then be expanded in modes which are plane waves with
wave vectors k. The field operator takes the form

φ(x, t) =
∑

k

√
1

2ωkV

[
ak ei(k·x−ωkt) + a

†
k e−i(k·x−ωkt)

]
, (15)

where ak and a
†
k are the annihilation and creation operators with the canonical commutator[
ak, a

†
k′
] = δkk′ . (16)

As in ordinary quantum mechanics, the number of particles in the mode with quantum number
k is given by the operator a

†
kak. At finite temperature, its expectation value

〈
a
†
kak

〉
equals the

Bose–Einstein distribution function

nk = 1

eβωk − 1
. (17)

This also equals
〈
aka

†
k

〉
when we disregard the vacuum or zero-point contributions which can

be neglected at finite temperature. Similarly, the expectation values of the operator products
akak and the Hermitian adjoint a

†
ka

†
k are zero.

We can now find the energy density from (13). For the mode with wave number k the
time derivative φ̇ will pick up a factor ωk, while the gradient ∇φ will pick up a corresponding
factor k. Thus, we get

ρ =
∑

k

1

2ωkV

(
ω2

k + k2
)
nk. (18)

Now letting the volume go to infinity so that∑
k

→ V

∫
ddk

(2π)d
, (19)

and using k2 = ω2
k for massless particles we reproduce the expression (6) from statistical

mechanics. We thus recover the same result for the thermal energy density. Similarly for the
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pressure, the two last terms in (14) will cancel and the equation simplifies to p = ρ/d as
before.

The expectation value of the full energy–momentum tensor at finite temperature is now
diagonal with the components 〈Tµν〉 = diag(ρ, p, p, . . . , p). Since the pressure p = ρ/d,
we have then recovered the well-known fact that the expectation value of the trace is zero for
massless particles,

〈
T µ

µ

〉 = 0. What is a bit surprising is that the trace of the energy–momentum
tensor itself in (12) is generally not zero. In fact, we have T µ

µ = (1 − D/2)(∂λφ)2 which is
only zero in D = 2 spacetime dimensions. In that case, the massless scalar field is said to
have conformal invariance [7]. This is a fundamental symmetry in modern string theories.
But we know from thermodynamics and statistical mechanics that the expectation value of
the trace of Tµν is zero in all dimensions. From the above calculation, we see that here in
quantum field theory this comes about since we are dealing with massless particles for which
〈φ̇2〉 = 〈(∇φ)2〉. This is equivalent to 〈(∂λφ)2〉 = 0 which follows from the equation of
motion for the field after a partial integration.

Concerning conformal invariance, the massless scalar field is special. Many years ago,
Callan et al [6] showed that it can be endowed with conformal invariance in any dimension,
not only for D = 2. The corresponding energy–momentum tensor will then be the canonical
one in (12) plus a new term

�Tµν = −1

4

D − 2

D − 1
(∂µ∂ν − ηµν∂

2)φ2. (20)

Taking now the trace of this improved energy–momentum tensor, it is found to be zero when
one makes use of the classical field equation ∂2φ = 0. Needless to say, the expectation value
of the conformal piece (20) is zero at finite temperature. However, this is not the case at zero
temperature for the scalar Casimir energy due to quantum fluctuations between two parallel
plates [8]. The new term makes the energy density finite between the plates, and only when it
is included is the vacuum expectation value of the trace of the energy–momentum tensor zero.
For the scalar field, this can be achieved in any dimension.

5. Maxwell field and photons

Black-body radiation is historically considered to be a gas of photons at finite temperature.
These massless particles are the quanta of the Maxwell field. In a spacetime with D = d + 1
dimensions, the electromagnetic potential is a vector Aµ(x) with D components. A gauge
transformation is defined as Aµ → Aµ + ∂µχ , where χ(x) is a scalar function. It leaves
the Faraday field tensor Fµν = ∂µAν − ∂νAµ invariant as in D = 4 dimensions. Thus, the
Lagrangian for the field also takes the same form

L = − 1
4FαβFαβ ≡ − 1

4F 2
αβ, (21)

and is obviously also gauge invariant. While the components F0j form an electric vector E
with d components, the d(d − 1)/2 magnetic components Fij no longer form a vector. The
number of electric and magnetic components are equal only when D = 4.

From the above Lagrangian, one gets the corresponding energy–momentum tensor

Tµν = FµλF
λ
ν + 1

4ηµνF
2
αβ (22)

as in the ordinary, four-dimensional case [5]. The energy density is therefore

T00 = E2
i + 1

4

(
F 2

ij − 2E2
i

) = 1
2E2

i + 1
4F 2

ij , (23)

while the pressure in the radiation will follow from the spatial components

Tmn = −EmEn + FmkFnk − 1
4δmn

(
F 2

ij − 2E2
i

)
. (24)
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In order to calculate the expectation values of these quantities, the field must be quantized. This
is most convenient to do in the Coulomb gauge ∇ · A = 0. In vacuum, the component A0 = 0
and we have D − 2 degrees of freedom, each corresponding to an independent polarization
vector eλ. Corresponding to the expansion of the scalar field operator in (15), we now have
for the electromagnetic field

A(x, t) =
∑
kλ

√
1

2ωkV

[
eλakλ ei(k·x−ωkt) + e∗

λa
†
kλ e−i(k · x−ωkt)

]
. (25)

The polarization vectors for a mode with wave number k are orthonormalized so that
e∗
λ · eλ′ = δλλ′ together with k · eλ = 0, and thus satisfy the completeness relation∑

λ

e∗
λieλj = δij − kikj

k2
. (26)

Since the electric field E = −Ȧ, we then find that each polarization component has the same
expectation value as the scalar field in the previous section, i.e.

〈
E2

i

〉 = (D − 2)
∑

k

ω2
k

2ωkV
nk, (27)

where nk is the Bose–Einstein density (17). Similarly, for the magnetic components
Fij = ∂iAj − ∂jAi , we obtain

〈
F 2

ij

〉 = 2(D − 2)
∑

k

k2

2ωkV
nk (28)

when we make use of the above completeness relation for the polarization vectors. Since the
photons are massless, we again have ωk = |k| and therefore

〈
F 2

ij

〉 = 2
〈
E2

i

〉
. As expected, we

then find that the density of the photon gas is D−2 times the density of the scalar gas. We also
see that the expectation value of the last term in (24) is zero. Defining again the pressure as
〈Tmn〉 = pδmn, it follows then that p = ρ/d as it should be.

Even though the expectation value of the energy–momentum tensor for the
electromagnetic field is found to be zero at finite temperature, the tensor itself in (22) has
a trace T µ

µ = (D − 4)F 2
µν

/
4. It is therefore traceless only in the ordinary case of D = 4

spacetime dimensions when the field has conformal invariance. In contrast to the scalar case,
the Maxwell field will not have this symmetry in spacetimes with extra dimensions and there
is no corresponding, improved energy–momentum tensor with zero trace. As we have seen
above, this has no serious implications for the photon gas at finite temperature. But at zero
temperature, when one calculates the electromagnetic Casimir energy, the tracelessness of Tµν

plays an important role [9]. Indeed, for dimensions D > 4, one finds that the electromagnetic
vacuum energy varies between the confining plates and diverges near them. But the pressure
remains constant and equals D − 2 times the corresponding scalar Casimir force [10].

6. Conclusion

Black-body radiation is defined to be a free gas of massless particles at finite temperature.
Purely kinetic arguments then relates the pressure and density by p = ρ/d, where d is the
spatial dimension of the volume containing the gas. This is equivalent to saying that the finite-
temperature expectation value of the energy–momentum tensor of the gas is zero. Describing
these particles as quanta of a field theory, we have shown that this tracelessness has very little
to do with the trace of the corresponding energy–momentum tensor of the field.
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There are many different ways to derive the energy–momentum tensor. The correct result
follows from the most direct derivation starting from the Lagrangian L of the field in a curved
spacetime with metric gµν instead of the Minkowski metric ηµν . From a variational principle,
one then finds that the energy–momentum tensor will have the general form [7]

Tµν = 2
∂L

∂gµν
− gµνL. (29)

From the scalar Lagrangian (11), this gives the energy–momentum tensor (12) and similarly
for the Maxwell field with the Lagrangian (21). What we have shown for these fields at finite
temperature can be summed up in the statement that the expectation value 〈L〉 in the last term
of Tµν is zero. This follows directly from the equations of motion and is also true for massive
fields. The average must be taken over an infinite volume or a finite volume with periodic
boundary conditions so that the surface terms from the partial integrations vanish.

Here we have only considered the unphysical situation where the extra dimensions are
assumed to be infinite in extent like the ones we know. In a realistic situation, they must be
compactified or curled up at a very small scale that is consistent with present-day observations.
The black-body radiation laws derived above will then be modified and end up as small
corrections to the four-dimensional results. Such an investigation will be more demanding
and is not taken up here.
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Appendix

In a d-dimensional Euclidean space, one can specify a point on the unit sphere by d −1 angles,
(φ, θ1θ2, . . . , θd−2). Here, φ is an azimuthal angle with the range 0 � φ < 2π , while all the
polar angles θn vary in the range 0 � θn < π . The differential solid angle is then given as

d�d−1 = 2π

d−2∏
n=1

sinn θn dθn, (A.1)

which gives for the full solid angle in d dimensions

�d−1 = 2π

d−2∏
n=1

∫ π

0
sinn θn dθn = 2πd/2

�(d/2)
, (A.2)

when we make use of the integral∫ π

0
dθ sinn θ = √

π
�

(
n+1

2

)
�

(
n+2

2

) . (A.3)

For the pressure in black-body radiation, we now need the average over this solid angle of
〈cos2 θd−2〉 = 1 − 〈sin2 θd−2〉. With these integral formulae, it is now straightforward to show
that

〈sin2 θd−2〉 = �
(

d
2

)
�

(
d+1

2

)
�

(
d−1

2

)
�

(
d+2

2

) = d − 1

d
, (A.4)

and thus 〈cos2 θd−2〉 = 1/d as used in section 2.
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